EE215 – FUNDAMENTALS OF ELECTRICAL ENGINEERING

Tai-Chang Chen University of Washington, Bothell Spring 2010

EE215

WEEK 4 CIRCUIT ANALYSIS (II)

April 23rd , 2010

© TC Chen UWB 2010 2

1

MESH CURRENT ANALYSIS

April 23rd, 2010

© TC Chen UWB 2010 3

QUESTIONS TO ANSWER

- Mesh current analysis
 - How to establish mesh current equations for an electric circuit?
- Supermesh
 - What is a supermesh?
 - How to apply the technique to analyze an electric circuit?
- Source transformation
 - How to apply the technique to analyze an electric circuit?
- Superposition
 - How to apply the technique to analyze an electric circuit?

 $\ensuremath{\mathbb{C}}$ TC Chen UWB 2010 $\ensuremath{~}^4$

EE215

MESH CURRENT METHOD (1)

- Def.: <u>Mesh Current</u> a current that only exists in the perimeter of a mesh.
 - The mesh-current method is similar ("dual") to the node-voltage method:

Node Voltage Method	Mesh Current Method

EE215

© TC Chen UWB 2010 5

MESH CURRENT METHOD (2)

- Write KVL for every mesh in terms of *mesh currents*.
- What's a *mesh*? A loop that does not contain any other loops within it.
- In essence, every "window" in a planar circuit is a mesh.
- *Mesh current* is current that flows in the mesh.
- Branches have either one or two mesh currents flowing through them. If two, they usually flow in opposite directions.

EXAMPLE

- Mesh 1:
- Mesh 2:
- Mesh 3:

Multiplying out the terms:

Solving this system yields

EE215 © TC Chen UWB 2010 7

COMPARE WITH NODE VOLTAGE METHOD

- - 80 a b 5 90 b 80 + 26 8 b 0
- Solving this system yields
- In this example, node voltage method is more efficient than mesh current method. Why?

SUPERMESHES

- Two neighboring meshes that "share" a <u>current</u> source can be combined into a "supermesh".
- Principle:

EE215

© TC Chen UWB 2010 9

MESH CURRENT METHOD

• Example (with dependent current source)

_

+

• Supermesh:

MESH CURRENT METHOD

• Example (with dependent current source)

 $\ensuremath{\mathbb{C}}$ TC Chen UWB 2010 $\,^{11}$

EE215

SOURCE TRANSFORMATION

April 23rd, 2010

SOURCE TRANSFORMS (1)

... another technique to simplify circuits

• Def.: Equivalence –

EE215

 \odot TC Chen UWB 2010 13

SOURCE TRANSFORMS (2)

• Example

SOURCE TRANSFORMS (3)

• Example

EE215

 $\ensuremath{\mathbb{C}}$ TC Chen UWB 2010 $\,^{15}$

SOURCE TRANSFORMS (4)

• Example

SOURCE TRANSFORMS (5)

• Example

EE215

 \odot TC Chen UWB 2010 17

SOURCE TRANSFORMS (6)

• Example

SOURCE TRANSFORMS (7)

• Example

© TC Chen UWB 2010 19

EE215

SOURCE TRANSFORMS (8)

Equivalent circuits:

• Condition:

SOURCE TRANSFORMS (9)

What if there is a resistor R_p parallel to v_s, or a resistor R_s in series to i_s?

SOURCE TRANSFORMS (10)

• What is wrong with this series of transforms?

SOURCE TRANSFORMS (11)

• Example: $R = R_p = R_L$ in first and last circuit

 Source transforms cannot be done at arbitrary locations in the circuit

EE215

 $\ensuremath{\mathbb{C}}$ TC Chen UWB 2010 $\ ^{23}$

SUPERPOSITION

April 23rd, 2010

SUPERPOSITION (1)

• Example: Circuit 1

• Circuit 2

EE215 © TC Chen UWB 2010 25

SUPERPOSITION (2)

• Example: Circuit 3

SUPERPOSITION (3)

- Circuit 1 is like Circuit 3 with current source switched off (current $i_0 = 0$).
- Circuit 2 is like Circuit 3 with voltage source switched off (voltage drop $v_0 = 0$).
- Effects of v_0 and i_0 are independent; they can be added (or superimposed).
- Reason: resistive circuits are linear systems.

EE215